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Sketch of a Proof That an Odd Perfect Number 
Relatively Prime to 3 Has at Least 

Eleven Prime Factors 

By Peter Hagis, Jr. 

Abstract. An argument is outlined which demonstates that every odd perfect number which is 
not divisible by 3 has at least eleven distinct prime factors. 

1. Introduction. A positive integer n is said to be perfect if u(n) = 2n, where u(n) 
denotes the sum of the positive divisors of n. No odd perfect numbers have been 
found, but it has not been proved that none exists. Throughout this paper N will 
represent an odd perfect number, and c(N) will denote the number of distinct 
prime factors of N. It was shown in [1] that co(N) 2 8,while if 3 1 N it was proved by 
Kishore [6] that c(N) 2 10. The purpose of the present paper is to sketch a proof of 
the following improvement of Kishore's result. 

THEOREM. If N is an odd perfect number and 3 I N, then co(N) 2 11. 

We shall omit most of the details of the proof of this theorem. The complete 
proof, in the form of a handwritten manuscript [3] of approximately forty-five pages, 
has been deposited in the UMT file. 

Our plan of attack is rather obvious. We assume the existence of an odd perfect 
number N such that 31 N and c(N)= 10 and show that such an assumption is 
untenable. In conjunction with Kishore's result this yields our theorem. Our proof is 
largely computational and the necessary calculations and searches were carried out 
on the CDC CYBER 174 at the Temple University Computing Center. The total 
amount of computer time used was about 45 minutes. 

2. Some Basic Facts. In what follows the letters p and q, with or without 
subscripts, denote odd primes. If 

(1) N = p1p2a2 ... pat 

where Pi <P2 < < t and ai > 0 then pai is called a component of N. Euler 
showed that for every component except one, 2 1 ai. For this special component, 
which we shall denote by 7Ttm, it is true that 7'_ m 1 (mod 4). 

It was proved in [4] that 

(2) Pt 2 100129, 

and in [2] it was shown that 

(3) Pt - 2 1009. 
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Now, let Fd be the dth cyclotomic polynomial and let E E(p; q) be the 
exponent to which p belongs modulo q. References for the following facts may be 
found in [1] and/or [8]. 

t t 
(4) 2N = ()=t (a)=t Id(pi) 

i=1 i=1 d 

where d runs over the divisors of a + l which exceed 1. 

(5) q IFk(p) if and onlyif k = qO. E(p; q). 

If fi > 0 then q 11 Fk(p); if 3 = 0 then q 1 (mod k). 

If k 2 3 then Fk( p) has at least one prime factor q such that 

q6 q-=I (mod k3. 

If q1 I Fk(p) and q2| Fk2(P) where kI > k2 , 2 and qi ki 
then q1 # q2. 

If q is a Fermat prime and pa II N; and we write b = vq(K) if qb 11 K, then: 

Fvq(a+1) if E=1, 

(8) vq(G( pa)) vq(a +) vq(p + 1) if E = 2 andp = 7T, 

L 0 otherwise. 

If h(k) = a(k)/k, so that k is perfect if and only if h(k) = 2, and h(p?) 

p/(p - 1), then 

(9) 1 ? h(pa) < h(pb) < h(qc) 

if 0 - a < b o x, 1 < c - x and p > q. 

3. Three Important Lemmas. We remind the reader that N is an odd perfect 
number with special prime factor 7r. 

LEMMA 1. If 5b11 N, where b 5, and 5b 4 1 (7T + 1), then 7r1 a(5b). 

LEMMA 2. If 17C 11 N, where c 2 6, and 17c-3Il(7 + 1), then 7T ,(17c). 

Proof. Since 17c3 I3(7 + 1), we see that 77 + 1 = J 17c-3 where J > 2. Also, 
since 1731 (,g + 1), it follows that 77 + 1 < 982677/9825. Therefore, 

a(17c) = (17c+1 - 1)/16 < 17c+1/16 = 17c3174/16 < ( T + 1)174/32 < 26117T. 

Now assume that ?T I a(17c). Then a(17C) = S7T where S < 2611. Since a(17C) = 1 + 
17 + 172 + +17c and 1731(?T + 1), we see that 307-SST _ -S (mod173). 
Therefore, S > 4606 which is impossible. 

LEMMA 3. If N = Mpa where (M, p) = 1, and G(M) 2/(2 - h(M)), then: 

(i) p = G(M) - 1 if a = 1; (ii) G(M) - (p + I)-' ?p < G(M) if a > 1. 

A few remarks concerning Lemma 3 are in order. First, the fact that p < G(M) is 
proved in Section 1.4 of [8]; and a slightly erroneous version of the lemma is stated 
in [5]. Second, in (i) it is clear that p = g. Third, referring to (1) we see that if 
2 < s < t andp = p, then from (ii), G(M) - (p,- + 3)'< Ps. 

4. Some Preliminary Results. We assume from now on that 31 N and (N) = 10. 
Note first that from (2) and (3), pl , 1009 and Pio > 100129. Also, p , 5, P2 = 7 
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and P3 = 11 since otherwise it would follow from (9) that h(N) < 
h(5X7?ol3??l7??l9?230?29m3l??l009??l00l29?) < 2 which is impossible since N is 
perfect. Likewise,p4 = 13 or 17 since h(5'7?11?19'23?29?31?37110091100129 ) 
< 2, and similar arguments show that p5 = 17, 19 or 23 and 19 < p6 < 31 and 
p7 < 79. From Lemma 1 in [6] we have 

(10) X--l(modl2) 

and 

(11) if p -1 (mod 3) andpa 11 N then a 2 2 (mod 3). 

It follows thatP7 2? 29. For if p7 = 23, h(N) > h(527411213. 172194232) > 2. 
A more elaborate argument now shows that p4 - 13, and the following lemma can 

then be proved. 

LEMMA 4. If 5b 11 N and b > 6, then a(5b) has a prime factor Q > 100129. 

With the aid of this lemma we can show that p5 # 23, and we have 

PROPOSITION 1. If N = [l I pai is an odd perfect number with 3 <P1 <P2 < 

<P10, then p1 
- 5, P2 = 7, p3 = 1 1, p4 = 13, p5 = 17 or 19, 19 ?p6 < 31, and 

29p < 79. p9 2 1009 and p1o > 100129. 

5. Permissible Exponents. It can be shown that 
(12) if 191 N, then 19101 N. 
Also, 
(13) 584'WN. 
For otherwise a(58) = 19^31 . 8291 N, and if P5 = 17. then h(N) > 2 while if 

P5 = 19, then h(N) < 2. 
Similarly, it can be proved that 

(14) 139- N. 
Referring to (11), (12), (13), (14) we define in Table I for each (possible) prime 

factor p of N a finite set, S( p), of "permissible" exponents for p. The entry 1* 
indicates that 1 E S( p) if and only if p might be g, while 2* indicates that 2 E S( p) 
if and only if p 2 (mod 3). We also tabulate m( p), the maximum element in S( p). 

TABLE I 

p S(p) m(p) 

5 2,4,6,10 10 
7 4,6,10 10 
11 2,4,6,8 8 
13 1,4,6,10 10 
17 2,4,6 6 
19 10 10 
37 1,4,6 6 

A 0(+ 19) 2*,4,6 6 

P7(#37) 2*,4,6 6 

P8 1*,2*,4,6 6 
p9 I*,2 2 
Pio l*, 2 2 
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6. A Revised Version of Lemma 3. Suppose that N = f1 l pii. With m( pi) as 
given in Table I we define bi = rmin(ai, m(pi)); and ci = ai if ai < m(pi) and 

Ci oo, otherwise. Let B9 and B1o be lower bounds for p9 and plo, respectively. If 
M N/pa8, we (formally) define ML and Mu as follows. ML = Q9Q1011 71 pbi where 
Q= pbi if the value of pi, for i = 9 or 10, is specified (known) and Qi 1 otherwise. 

Mu = R9R 1017= I pci where Ri = p7 if pi is specified and Ri B7o otherwise. From 
Lemma 3 we have 

LEMMA 3*. If N Mpg8 where P81 M and h(Mu) < 2, then 

(i) G(ML) - 1 P8 G(Mu) - 1 if a8 = 1; 
(ii) G(ML)-(p7 + 3)-1 P8 < G(Mu) if a8 > 1. 

Moreover, if F(ML) = G(ML) - (p7 + 3)-1, then 

(iii) G(ML) - (F(ML) + 1)-I P8 < G(MU) if a8> 1. 

7. An Upper Bound For pg. Our immediate objective is to prove that pg < 105. 

With this in mind assume that pg > 105. Then (see Section 6) we may take 
B9 = 100003 and B10 = 100129. Assuming that p5 = 19 a computer program utiliz- 
ing double-precision arithmetic was written which used Lemma 3* to bound P8 for 
every possible value of N. (Only a finite number of cases, determined by the values of 

pi as given in Proposition 1 and the elements of S(pi) as given in Table I, had 
to be considered.) It was found that if pg > 105 and p5 = 19 then 112 ll N, 
5107101361910294376 I N and P8 = 41. Since F5(41) = 5 .579281 and 
h(5107101 121361910294376414579281) > 2, we see that 5 l (a8 + 1). Therefore, if 5b11 N 
it follows from (8), (4) and (6) that 5b a( p9ap ) and that 5b-21 (,g + 1). Thus, 
,g > 2.58 - 1 = 781249 and, from Lemma 1, 7 a(5b). If p is the smallest prime 
factor of b + 1 then, since F3(5) = 31, F5(5) = 11 71 and F7(5) = 19531, we see 
from (4) that p - 1 1. Using (5) it is not difficult to verify that pi I Fp(5) for i < 8. 
Therefore, (assuming without loss of generality that 77 = p o) Fp(5) = pa. According 
to the table in [7] either a = 1, so that p9 = Fp(5) ? F 1(5) = 12207031 or pg > 229. 

It follows that h(N) < h(50?7? 12 130?190?290?3700410?12207031??78124900) < 2 and 
this contradiction shows that pg < 105 if p5 = 19. A similar, but lengthier, argument 
shows that p9 < 105 if p5 = 17. Thus, we have 

LEMMA 5. If N =fl1I pai is odd and perfect and 3 <P <P2< ... <pIo, then 

103 <p9 < 10. 

8. A Proof That p5 19. The proofs of the following two lemmas are omitted 
here. 

LEMMA 6. If 171 N, then 17211 Nor 174 ll N. 

LEMMA 7. If 51 af(N/7m), then p1_ 1 (mod 5). Also, if 51 a(pai) where i < 7, then 

Pi = p7 = 41 and P10 = F5(41)/5 = 579281. 

Assume that p5 = 17 and 172 ll N. Then P8 = 307 since a(172) = 307. With 
B9 = 1009 and BI0 = 100129, Lemma 3* was employed in order to bound P8 for all 
possible values of N. In no case was 307 a permissible value of P8. Therefore, if 
p5 = 17, then 174 11 N. Since it can be shown that 1741 N, we have 

LEMMA 8. p5 = 19. 
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9. The Proof of Our Theorem Concluded. The proofs of the following two lemmas 

are omitted here. 

LEMMA 9. If p9 = ST, then pq 9 - 1 (mod 5). 

LEMMA 10. If 5bI IN,thenb= 2,4or6. 

With p5 = 19, B9 = 1009, BI0 = 100129 and making use of Lemma 10, Lemma 3* 

was utilized to determine P8 for all possible values of N. The results are given in 

Table IV. The notation p * means that p8 11 N. 

TABLE IV 

Restrictions on N P8 

52 N; 7101 121361910234316 
( N 59 or 61 

54 N; 7101181361910234376 N 71 

5211213 11 N; 7101910234316 1 N 43 

52112 11 N; 71013619102943 161 N 37* 

5211 N; 7101181361910234316l N 61* 

For the case P8 = 43 a modified version of Lemma 3* was used to bound pg. It 

was found that 2647 < pg < 2707. Since the only prime in this range congruent to 1 

modulo 5 is 2671 and since 571 1 F5(2671) it follows from Lemma 7, (8) and (4) that 

521 a(palNo). This is impossible sincepi z 1 (mod 52) for i < 10. Therefore, p8 7/ 43. 

If P8 = 71, then p9 = 1399 or 1409. From (10), S =ip9. Since 2111 F5(71) it 

follows from (8) and Lemma 7 that 5 1 G(p'O1). Since pi Z 1 (mod 52) if i < 9, we 
see that 7T = PIo Now, E(I 1; 7) = 3 and F3(l 1) = 7- 19 while 1723 1 F2I(I 1). E(13; 7) 
= E(1399;7) = 2 and E(19;7) = 6. E(23;7) = E(37;7) = E(1409;7) = 3 while 

79 1 F3(23), 3 1 F3(37) and 283813 1 F3(1409) (while F2(283813) = 2 141907). Also, 

E(71;7) = 1 and 8831 F7(71). From (4) and (5), 721c (p,, - p'9). Therefore, 

79 a(pal?). If E(p10; 7) = 1, then from (4), (5), (6) and (7) N has at least nine prime 
factors congruent to 1 modulo 7. If E(p 1o; 7) = 3 or 6, then (since ST 1 (mod 3)) 

31 N. Therefore, E(plo; 7) = 2 and 791(7T + 1). It follows that 7T > 2- 79-1 = 

80707213, and since h(5<47??11??13??19??23??37??7l??399?80707213??)<2, we see 

thatP8 # 71. 

Since it can also be shown that P8 7 37 or 59 or 61, the proof of our theorem is 

now complete. 

10. Some Concluding Remarks. This paper is one of many which have appeared in 

the last ten years which indicate that if an odd perfect number exists then it must be 

"cotnplicated" (i.e., it must be very large, possess many prime factors (some of which 

are large), etc.) To the best of my knowledge, the last of these papers which did not 

make extensive use of a high-speed digital computer was [8]. I may be wrong, but it 

seems to me that we are near the boundaries of what can be achieved in this area 

given our present knowledge concerning questions relating to the factors of a 

cyclotomic polynomial with a prime argument and the present-day ""state of the art" 

in computer hardware and software. Thus, I would be surprised if someone were to 



404 PETER HAGIS, JR. 

prove in the next five years or so that every odd perfect number is greater than IO?, 
or has at least 9 prime factors, or has a prime factor which exceeds 106. These results 
are all obtainable, I believe, but both the sheer effort and the computer time 
required are, in my opinion, prohibitive at present. 
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